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Abstract

U.S. Mine Safety and Health Administration (MSHA) regulations require underground coal mines 

to use refuge alternatives (RAs) to provide a breathable air environment for 96 hours. One of the 

main concerns with the use of mobile RAs is heat and humidity buildup inside the RA. The 

accumulation of heat and humidity can result in miners suffering heat stress or even death. MSHA 

regulations require that the apparent temperature in an occupied RA not exceed 95 °F. To 

investigate this, the U.S. National Institute for Occupational Safety and Health (NIOSH) 

conducted testing on a 23-person tent-type RA in its Experimental Mine in a test area that was 

isolated from the mine ventilation system. The test results showed that the average measured air 

temperature within the RA increased by 9.4 °C (17 °F) and the relative humidity approached 94 

percent at the end of a 96-hour test. The test results were used to benchmark a thermal simulation 

model of the tested RA. The validated thermal simulation model predicted the volume-weighted 

average air temperature inside the RA tent at the end of 96 hours to within 0.06 °C (0.1 °F) of the 

average measured air temperature.
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Introduction

If an accident occurs in an underground coal mine, miners who fail to escape from the mine 

can enter a refuge alternative (RA) for protection from adverse conditions, such as high 

carbon monoxide levels. One of the main concerns with the use of mobile RAs is the 

potentially adverse thermal environment inside an RA from the metabolic heat of the 

occupants and the heat released by the carbon dioxide (CO2) scrubbing system. Moreover, 

the humidity within the RA will increase through occupants’ respiration and perspiration, 

and from the chemical reaction within the CO2 scrubbing system. The accumulation of heat 

and humidity can result in miners suffering heat stress, heat stroke or even death.

In its 2007 report to Congress, the U.S. National Institute for Occupational Safety and 

Health (NIOSH, 2007) recommended that RAs should be designed to ensure that the internal 

apparent temperature, which is a temperature-humidity metric, in an occupied RA does not 

exceed 35 °C (95 °F). However, a standard method to determine compliance with this metric 

does not exist. The heat transfer process within and surrounding an RA is very complex and 

is not easily defined analytically or experimentally.

To investigate the related issues, heat and humidity testing on a 23-person tent-type RA was 

conducted in NIOSH’s Experimental Mine in a test area isolated from the mine ventilation 

system. During the testing, numerous parameters were measured: heat input to the chamber; 

air temperature and relative humidity inside the RA; mine air temperature; mine strata 

temperatures near the RA versus depth; and airflow inside and outside the chamber.

TAITherm heat transfer analysis software from ThermoAnalytics Inc. was used to develop a 

thermal simulation model of the RA as it was tested in the mine, using the test results as the 

benchmark. TAITherm is a thermal modeling software that predicts the full range of 

temperature and humidity distribution in a system. Both sensible and latent heat were used 

in the test and the model. Simulated miners were used to input heat to represent the 

metabolic heat input of actual miners, and heated water tanks were used to input heat to 

represent the heat generated by the CO2 scrubbing system.

Heat production and transfer within an RA

There are various levels of research needed to quantify the heat production and transfer 

within a confined space such as an RA. The temperature and humidity within a confined 

space is critical because of the relatively narrow range in which the unprotected human body 

can operate without developing heat stress (Johnson, 2008). The human body maintains a 

normal core temperature between 36.0 °C (96.8 °F) and 38.0 °C (100.4 °F) (Macpherson, 

1993). In hot environments, the body is able to cool itself through the evaporation of sweat 

to maintain a viable core temperature. The heat sources within an RA include metabolic 

activity and heat contributed from equipment, such as the CO2 scrubbing system. Heat 

within an RA is dissipated through conduction, convection, radiation, sweat evaporation 

from occupants, and condensation on the RA interior.

The heat produced by metabolic activity increases as the level of activity increases. Several 

standard values can be found for the heat produced by human metabolism (Williams, 2009; 
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Bauer and Kohler, 2009). According to Bauer and Kohler, for examining RA heat and 

humidity, a representative metabolic heat input of 117 W (399 Btu/hr) per person is 

adequate. The physical testing and thermal simulation model discussed in this paper use this 

value as the representative input heat rate of miners in an RA.

Heat transfer to and from the human body occurs from conduction, convection, radiation, 

respiration and evaporation. Because miners in a tent-type RA will sit or lie directly on the 

floor, heat loss through conduction can be significant. The differential between skin and core 

temperatures results in heat transfer from the body’s core to the skin, where it can be lost 

through conduction, convection, radiation and perspiration. Sweating occurs when 

conduction, convection, radiation, respiration and evaporation of sweat become insufficient 

to dissipate the accumulation of heat from metabolic and environmental sources. Because 

evaporation of sweat absorbs significant amounts of heat from the skin, it allows the body to 

lose heat rapidly. As the ambient temperature approaches or exceeds skin temperature, 

sweating becomes the body’s primary mechanism of heat loss. However, the rate of sweat 

evaporation is limited by the relative humidity of the surrounding air. As the relative 

humidity increases, the rate of sweat evaporation slows, reducing the body’s ability to cool 

itself. Evaporation of sweat becomes very slight at high relative humidity. For example, the 

Zunis Foundation (2009) found that the maximum sweat evaporation rate drops from ~2.5 

L/h (84.5 oz/h) at relative humidty of 50 percent to ~1.3 L/h at relative humidity of 80 

percent at an air temperature of 35 °C (95 °F). Therefore, high humidity will reduce the 

effectiveness of the body’s most effective heat loss mechanism.

In-mine experiments

Tests were conducted underground in the Experimental Mine at the NIOSH research 

laboratory in Pittsburgh, PA. A tent-type RA with a 1.7-m-high (5.5-ft-high) tent, an internal 

volume of roughly 55.3 m3 (1,881 ft3) and a floor surface area of about 31.8 m2 (342 ft2) 

was used for these tests (Fig. 1). This RA meets the unrestricted surface area requirement of 

1.4 m2 (15 ft2) per miner specified in 30 CFR 7.505 for up to 23 people, and it meets the 

unrestricted volume criteria of 1.7 m3 (60 ft3) per miner for seam heights up to 1.37 m (4.5 

ft), as mandated by the U.S. Mine Safety and Health Administration (MSHA) for RA 

manufacturers to comply with by 2018 (U.S. Government Publishing Office, 2016). Tent-

type RAs, such as the tested RA, use a metal box to store their tent prior to its deployment, 

to store the compressed air cylinders that are used to inflate the tent, and to store compressed 

oxygen cylinders that are used to provide occupants with oxygen. The metal box for the 

tested RA was 1.98 m (6.5 ft) wide and 4.72 m (15.5 ft) long.

Because using actual miners for 96-hour heat and humidity tests is not practical, simulated 

miners were developed to input the metabolic heat that is representative of real miners. 

Because tent-type RAs are not provided with benches, cots or pads, miners in a tent-type RA 

will sit or lie directly on the floor of the RA. Therefore, the simulated miners should 

approximate the heat transfer area of a seated or lying miner. For this reason, each simulated 

miner’s surface area should be approximately 75 percent of the 1.8-m2 (19.4-ft2) surface 

area of the typical human body (Bernard, 2012). These simulated miners (Fig. 2) were 

developed using commonly available 0.11-m3 (30-gal) steel drums, thin-walled aluminum 

Yan et al. Page 3

Min Eng. Author manuscript; available in PMC 2016 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pipes, two aquarium air pumps, an aquarium water pump and two silicone-encapsulated 

electrical resistance heaters, each with a nominal power rating of 120 W (409.5 Btu/hr) at 

120 V to represent human metabolic heat (Yantek, 2014). Each simulated miner had a 

surface area of 1.35 m2 (14.5 ft2), which is exactly 75 percent of 1.8 m2 (19.4 ft2). More 

details on the design of the simulated miners can be found in Yantek (2014).

During testing, 23 simulated miners were used to deliver 117 W (399.2 Btu/hr) of heat each 

to the interior of the RA. To simulate the latent heat transfer from actual miners due to 

sweating, each simulated miner was used to input a nominal 1.3 L/d of water vapor into the 

RA. For each simulated miner, an additional 27.5 W (93.8 Btu/hr) of heat was input to 

represent the heat generated by a lithium hydroxide CO2 scrubbing system (Yantek, 2014). 

The heat to represent that of the scrubbing system was generated using four heated water 

tanks. These tanks provided make-up water for the moisture generation system of the 

simulated miners. For the tests conducted with 23 simulated miners, the total heat input was 

nominally 3,323.5 W (11,340.3 Btu/hr).

Test setup

The RA was positioned in the Experimental Mine with the center of the tent located at the 

center of the entry so that the sides of the RA were equidistant from the ribs. To prevent bulk 

airflow into the test area, the RA was isolated from the mine ventilation system using 

polystyrene walls. This represents a worst-case scenario – a loss of the mine ventilation fans. 

The encapsulated test area was approximately 44.2 m (145.0 ft) long and 1.8 m (5.9 ft) high. 

The 23 simulated miners and four heated water tanks were arranged to distribute the heat as 

evenly as possible within the deployed tent.

Numerous transducers were used to measure various parameters with three Data Translation 

DT9874 data acquisition systems. During the test, all data were acquired at a rate of 1 

sample every 20 seconds with 24-bit resolution. For all testing, the actual heat input was 

measured using two Flex-Core PC5-019CX5 watt transducers, one for the group of 11 

simulated miners along the left side of the tent, and one for the group of 12 simulated miners 

along the right side of the tent.

Sensors were used inside and outside the tent to record the internal and external air 

temperatures, relative humidities, airflows, condensations and RA surface temperatures. 

Figure 3a shows the sensors positioned inside the RA, and Fig. 3b shows the locations for 

surface-mount temperature sensors on the exterior surfaces of the RA. For ease of reference, 

the tent was divided into three sections: Tent 1, Tent 2 and Tent 3. To determine the mine 

airflow speed near the RA, three omnidirectional airflow sensors were positioned near the 

tent. These particular airflow sensors were chosen because they can accurately measure flow 

speeds as low as 0.05 m/s (10.0 ft/min) and are not sensitive to flow direction. Measuring the 

airflow is important because any heat transfer simulation requires the specification of the 

convection coefficient that is directly related to the air velocity.

The mine air and mine strata temperatures were measured using resistance temperature 

detectors (RTDs). The mine air temperatures near the RA were measured using eight 182.9-

cm-long (72-in.-long) averaging RTDs, which are not shown in Fig. 3. The average mine air 
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temperature near the RA was calculated by averaging the readings of these eight sensors. 

The mine roof, rib and floor strata temperatures were measured at multiple locations. To 

measure the mine strata temperatures at different depths, polyvinyl chloride rods with four 

attached RTDs at depths of 0, 15.2, 61.0 and 121.9 cm (0, 6, 24 and 48 in.) were installed in 

the mine roof, rib and floor. To install the RTD-instrumented rod, a hole with diameter of 

2.54 cm (1.0 in.) was drilled into the mine strata and the instrumented rod was pushed into 

the hole. In the floor strata, the rods were installed beneath the centers of the metal box, Tent 

1, Tent 2 and Tent 3. An additional instrumented rod was installed in the mine floor beneath 

Tent 2 to monitor floor strata temperatures between the two simulated miners BP #11 and 

BP #13. To measure the average temperature along the mine floor strata-tent interface, three 

1.8-m-long (6.0-ft-long) averaging RTDs were installed in shallow slots cut into the mine 

floor under Tent 1, Tent 2 and Tent 3. To measure rib strata temperatures, three RTD-

instrumented rods were installed: one aligned with the center of the metal box, one aligned 

with the center of Tent 2 and one aligned with the center of Tent 3. To measure roof strata 

temperatures, two RTD-instrumented rods were installed: one above the center of Tent 1 and 

one above the center of Tent 2. Above the center of the metal box and Tent 3, the 

temperature with depth was not measured due to concerns of water being released from the 

roof strata when drilling holes to install the RTD-instrumented rods. At these two locations, 

the roof strata surface temperatures were measured using RTDs attached to the roof surface.

Test procedure

Unlike a human miner, who is at body temperature when he or she enters an RA, a simulated 

miner is “cold” when it is first powered, and it may take up to a day for it to reach its steady-

state temperature. As a simulated miner is allowed to heat up to its operating temperature, 

the surroundings in the test area also heat up, effectively preheating the RA and the test area. 

In this case, the final air temperature measured inside the RA at the end of the 96-hour time 

period would be higher than it would have been if the simulated miners were at their 

operating temperatures at the start of the 96-hour period.

To address this, the following approach was used to decrease the time for the simulated 

miners to reach their operating temperatures and to minimize heating of the RA and 

surroundings: Prior to the beginning of each test, all of the simulated miners were wrapped 

in quilted, 2.54-cm-thick (1.0-in.-thick) fiberglass insulating blankets, with R-value of 

~3.14, and the top of each was covered with a 2.54-cm-thick (1.0-in.-thick) Styrofoam disk. 

By insulating the simulated miners, the heat lost to the RA can be minimized so that the 

temperatures of the simulated miners increase relatively quickly. As an additional step to 

reduce the time required for the simulated miners to reach their operating temperatures, the 

simulated miners were designed to use two heaters: a steady-state heater and a preheater, 

each with a rating of 120 W (410 Btu/hr) at 120 V. At the beginning of the tests, both the 

steady-state heater and the preheater for each simulated miner were turned on and the 

surface temperatures at the mid-height of two of the simulated miners were monitored. The 

preheaters were turned off and the insulation was removed when the monitored temperatures 

were in the range of 29 to 35 °C (85 to 95 °F), roughly the expected steady-state temperature 

of the simulated miners and the skin temperature of the human body. The simulated miners 

approached their steady-state temperatures within three to four hours. At this time, most of 
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the heat generated by the simulated miners was transferred to the RA air and mine floor 

strata, with the remaining heat acting to increase the simulated miner temperatures.

Experimental results

Because the measured temperatures were observed to change very slowly – less than 0.6 °C 

(1.0 °F) over the final 24-hour time period – the sample rate at which the raw test data were 

acquired was found to be much higher than necessary, and reducing the data set would not 

affect the characteristics of the data. The sample rate was therefore reduced from 1 sample 

per 20 seconds to 1 sample per 5 minutes.

The RA internal air temperatures are the temperatures of the most interest because they are 

used to determine the apparent temperatures within the RA. The air temperatures within the 

tent rose relatively quickly during the first day before leveling off with a slow, steady rise for 

the remainder of the test (Fig. 4). The temperatures at the mid-heights of Tent 1, Tent 2 and 

Tent 3 – labeled X28-I-Tnt1-AT-MH, X33-I-Tnt2-AT-MH and X36-I-Tnt3-AT-MH, 

respectively – were within about 0.83 °C (1.5 °F) of each other throughout the test. The 

average measured air temperature within the tent at mid-height, calculated using the 

temperatures at the centers of Tent 1, Tent 2 and Tent 3, increased by 9.4 °C (17 °F) during 

the tests. At the metal box end of the RA – labeled X26-I-MB-AT-MH – the data show that 

the interior air temperatures at the mid-height of the metal box were about 5.6 °C (10 °F) 

lower than the temperatures within the tent.

The mine ambient temperature rose steadily throughout the test. Eight 182.9-cm-long (72-

in.-long) averaging RTDs were positioned near the RA – both along the tent side and over 

the tent. The temperatures along the sides of the RA at mid-height were a bit lower than the 

overhead temperatures (Fig. 5). This air temperature gradient was caused by warm air rising 

due to buoyancy effects both inside and outside the RA.

Strata temperatures were also monitored. The temperatures on the mine roof, rib and floor 

surfaces increased almost immediately after beginning the test. Figure 6 shows the 

measurements from the probes overhead, beside and underneath the center of Tent 2. As 

depth into the strata increased, the temperatures increased less and at lower rates. The 

temperatures measured between the tent and mine floor increased by about 3.1 °C (5.5 °F) in 

the first 24 hours. By the end of four days, the temperatures between the tent and the surface 

of the mine floor increased by 6.1 °C (11.0 °F), the temperature at 15.2 cm (6 in.) deep 

increased by 5.3 °C (9.5 °F), the temperature at 61.0 cm (24 in.) deep increased by 1.9 °C 

(3.5 °F), and the temperature at 122 cm (48 in.) deep remained constant. The roof strata 

temperatures behaved similarly except that the final temperature reached was about 1.1 to 

1.7 °C (2 to 3 °F) below that of the floor strata at the end of the 96-hour test. The rib strata 

temperatures increased more slowly compared with the roof and floor strata temperatures. 

The rib strata temperatures also had less gradient with depth compared with the roof and 

floor strata temperatures.

The temperatures of the mine floor strata beneath the tent showed the largest increases 

because the simulated miners were in direct contact with the tent floor. The in-mine test data 
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showed that the strata temperatures at a depth of 1.2 m (4.0 ft) remained nearly constant 

throughout the tests. Therefore, because the strata temperatures up to a depth of 1.2 m 

change within 96 hours, thermal simulation models of an RA in an underground coal mine 

should include at least a 1.2-m-thick (4.0-ft-thick) layer of mine strata. The temperatures at a 

depth of 1.2 m (4.0 ft) can then be assumed to remain constant at the temperatures 

corresponding to the mine that the model is to represent (Yantek, 2014).

Thermal simulation model description

There are several thermal models used to simulate and predict the temperature and humidity 

within an occupied RA. In one study, the temperature inside an RA was simulated using 

ANSYS Fluent software to investigate the effects of chamber structure, size and mine air 

temperature (Collingwood, 2012). In another, a thermodynamic heat transfer model was 

developed with some assumptions specified to produce a simple model given some RA 

design parameters (Gillies, 2012). Another heat dissipation mathematical model was 

developed and used to calculate RA interior temperature (Brune, 2012). The results agreed 

well with the test data, provided the equation parameters were chosen appropriately. All of 

these models treated the mine strata surface temperature and the mine air temperature as 

constant.

We developed a TAITherm model of the Experimental Mine test to account for the RA and 

mine geometry, the RA and mine strata thermal properties, and the heat generated by the 

simulated miners and the heated water tanks that were used to represent the CO2 scrubber 

heat. In this model, the mine strata surface temperature and the mine air temperature were 

not treated as constant. TAITherm is a validated heat transfer prediction software tool that 

applies a multiphysics approach to solve for thermal conduction, radiation, convection and 

moisture transport under both steady-state and transient conditions. The thermal model was 

created from the three-dimensional, computer-aided-design geometry of the tested 1.7-m-tall 

(5.5-ft-tall) tent-style RA. The geometry was modified so that a finite element shell mesh 

could be applied. In TAITherm, a shell element mesh was used to model the mine strata up 

to a depth of 1.8 m in twenty-four 7.62-cm-thick (3.0-in.-thick) layers. Twenty-three 

simulated miners and four heated water tanks were positioned within the model at the same 

positions as during testing. Due to a limitation of TAITherm, a single bulk air temperature 

was modeled in the tent. In addition, a single air temperature was modeled for the mine.

The model predicts the transient thermal responses of the simulated miners, RA surfaces, 

RA interior air, mine strata and mine air. In addition, it accounts for moisture input and 

condensation on the RA interior surfaces. Inputs to the model are the simulated miner heat 

rates, the CO2 scrubber system heat rate, and the moisture input rate. The initial RA air 

temperature, RA structure temperature, mine air temperature and mine strata temperatures 

are used as initial conditions for the model. During simulations, the measured heat rates and 

initial temperatures from the test data were used as inputs into the model.

The thermal properties of the RA and simulated miners were estimated based on information 

provided by the RA manufacturer and from commonly available material property 

information. The thickness of the concrete layer of the mine floor was estimated using 
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ground penetrating radar. Core samples were taken of the mine rib, roof and floor. These 

samples were used to perform material thermal property analysis.

Model validation

To validate the accuracy of the model, the transient thermal response predicted by the model 

was compared with the experimentally collected physical measurements. From the test data, 

the temperature averaged over the entire RA interior volume was used for a comparison with 

the model’s results. The model calculates a single average air temperature for the entire tent 

interior. A plot comparing the transient temperatures predicted by the model with the 

experimental data is shown in Fig. 7. The figure shows comparisons for the temperature at 

the top of the BP #13 simulated miner, the RA interior air temperature, and the temperature 

at the tent floor at the junction of Tent 2 and Tent 3. For the mine floor temperature, from the 

simulation results, an average of predicted element temperatures over a 1.8-m (6.0-ft) 

distance was used to compare the model results with the 1.8-m-long (6.0-ft-long) averaging 

RTDs used in the physical test. Figure 8 shows a comparison of the measured and calculated 

relative humidities inside the tent. The final relative humidity for the model was 92.5 

percent, and the averaged measured final relative humidity was 93.9 percent.

Comparisons were made between the measured and predicted temperatures at numerous 

locations on the RA surfaces. Figure 9 shows examples of elements that were selected for 

comparison with measured data (see numbered callouts). TAITherm calculates temperatures 

at the centroid of each surface mesh element.

Table 1 summarizes the results of the model validation at the end of the 96-hour test. For 

comparing the RA internal air temperature predicted by the model to the measured RA 

internal air temperature, a volume-weighted average RA internal air temperature was 

calculated from the test data. The predicted air temperature within the RA tent is very close 

to the average measured air temperature inside the tent, with only a 0.06 °C (0.1 °F) 

overprediction. The temperatures of the simulated miners, BP #10 and BP #13, and tent side 

also match closely. The largest error was 1.9 °C (3.4 °F) for a point on the bottom of BP 

#13. A similar error was not seen on the bottom of BP #10. As shown in Table 1, the mine 

strata temperature predictions may differ from the measured data by 1.1 to 1.6 °C (2.0 to 

3.0 °F). The discrepancies are most likely due to uncertainties in strata properties such as the 

rock types, thicknesses and specific thermal properties, and the lack of inclusion of air 

stratification in the model.

Conclusions and remarks

Test results were used to validate a thermal simulation model. In the 96-hour in-mine tests, 

the average measured air temperature within the RA increased by 9.4 °C (17 °F). The mine 

air and mine strata temperatures increased over the tests. The mine strata temperatures at a 

depth of 1.2 m (4 ft) remained nearly constant throughout the tests, while the strata surface 

temperatures increased at almost the same rates as the air temperatures. When the transient 

thermal response predicted by the TAITherm model was compared with physical 

measurements collected during the test, it was found that the model predicted the average 
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tent interior air temperatures after 96 hours to within 0.06 °C (0.1 °F) of the measured 

temperatures.

Uncertainties in the rock types and their thermal properties are likely the largest source of 

error in the model, even with taking core samples and performing thermal conductivity and 

specific heat measurements. The RA may perform differently in mines that have different 

strata with different thermal conductivity properties. Hence, the validation of the thermal 

simulation model of a particular RA may need to provide a baseline strata model against 

which the RA’s performance can be compared.

Although not discussed in this paper, the validated model has been used to extend the 

analysis to include TAITherm models of humans instead of simulated miners. The human 

thermal model could be used to predict the transient core temperature response of RA 

occupants. Further studies could use the core temperature response to determine safety limits 

based on the mine ambient temperature and number of RA occupants (Van der Linde et al., 

1992; Webber et al. 2003). It is worth mentioning that the mine ambient air temperature 

around the chamber may increase during a mine fire. This could affect the results, and the 

possibility should also be investigated.

Finally, the benchmarked model can be used to develop derating tables for occupied tent-

type RAs at hot mines to provide the miners with more comfortable thermal environments 

and ensure that the interior apparent temperatures do not exceed the 95 °F specified by 

MSHA regulations.
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Figure 1. 
A 23-person tent-type RA: (a) during deployment, (b) after deployment and (c) showing an 

interior view with simulated miners and heated water tanks.
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Figure 2. 
Inside view of a simulated miner.
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Figure 3. 
Sensor locations: (a) interior and (b) exterior.
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Figure 4. 
RA internal air temperatures at various locations.
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Figure 5. 
Mine air temperature along the sides of the RA at mid-height and over the tent.
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Figure 6. 
Mine strata temperatures for: (a) floor under the center of Tent 2, (b) roof above the center of 

Tent 2 and (c) rib at the center of Tent 2, as measured during the 96-hour test.
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Figure 7. 
Simulated (solid line) versus measured (dotted line) temperature results for the top of the BP 

#13 simulated miner; the interior air at mid-height; the floor strata, underneath the 

intersection of Tent 2 and Tent 3, of the tested RA; and the mine floor under BP #10.
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Figure 8. 
Modeled (solid line) versus measured (dotted line) interior relative humidities.
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Figure 9. 
Three-dimensional view of the simulated RA model at the end of the 96-hour test.
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Table 1

Model error summary at 96 hours (positive value means overprediction by model, negative means 

underprediction).

Sensor location Sensor no. Prediction
error (°C)

Tent air x-26, x-28,
x-33, x-36

0.06

Mine air 2–31 to 2–40 −0.3

BP10 bottom x-8 0.5

BP10 side x-9 0.2

BP10 top x-10 −1.3

BP13 bottom x-11 −1.9

BP13 side x-12 1.0

BP13 top x-13 −0.5

Tent side 1 1–18 −0.1

Tent side 2 1–24 0.1

Tent side 3 1–28 −0.6

Tent top 1 (middle) 1–20 −0.7

Tent top 2 (middle) 1–26 −1.0

Tent top 3 (middle) 1–30 −0.6

Tent floor 1–2 1–5 1.0

Tent floor 2–3 1–11 0.0

Mine walls (rib) 2 2–13 0.9

Mine walls (rib) 3 2–17 0.9

Mine roof over tent 2–26 −0.3

Mine roof over case 2–21 0.3

Mine floor under Tent 1 -
under simulated miners

1–41 1.4

Mine floor under
Tent 2 -middle

2–4 1.0
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